https://akademia-matematyki.edu.pl/ 31.Oblicz sumę wszystkich liczb trzycyfrowych zapisanych wyłącznie za pomocą cyfr 1,2,3,4 (cyfry mogą się powtarzać). Źró
a1=5 an=105 r=4 an=a1+(n-1)r 105=5+(n-1)4 105=5+4n-4 105=1+4n 104=4n n=26 czyli podanych wyrazow jest 26. wystarczy zastosowac wzor na sume coagu arytm. S26=(a1+an)n/2=(5+105)26/2=110*13=1430 jareczka Expert Odpowiedzi: 2635 0 people got help
Tylko teraz nie wiem jak obliczyć tą granicę: \(\lim_{n->\infty}4\cdot (\frac{\frac{1}{4}}{1}-\frac{\frac{1}{4}}{5}+\frac{\frac{1}{4}}{2}-\frac{\frac{1}{4}}{6
Luuks Użytkownik Posty: 52 Rejestracja: 21 cze 2009, o 17:39 Płeć: Mężczyzna Podziękował: 20 razy Oblicz sumę jedenastu początkowych wyrazów ... ciągu arytmetycznego o numerach nieparzystych, jeżeli jedenasty wyraz tego ciągu jest równy 20. Zordon Użytkownik Posty: 4977 Rejestracja: 12 lut 2008, o 21:42 Płeć: Mężczyzna Lokalizacja: Kraków Podziękował: 75 razy Pomógł: 909 razy Oblicz sumę jedenastu początkowych wyrazów Post autor: Zordon » 26 sie 2009, o 17:44 Za mało danych, czy na pewno to jest całe polecenie? Inkwizytor Użytkownik Posty: 4105 Rejestracja: 16 maja 2009, o 15:08 Płeć: Mężczyzna Lokalizacja: Poznań Podziękował: 1 raz Pomógł: 427 razy Oblicz sumę jedenastu początkowych wyrazów Post autor: Inkwizytor » 26 sie 2009, o 18:21 220 Zordon mała podpórka: \(\displaystyle{ a_{n-1} + a_n + a_{n+1} = 3a_n}\) Zordon Użytkownik Posty: 4977 Rejestracja: 12 lut 2008, o 21:42 Płeć: Mężczyzna Lokalizacja: Kraków Podziękował: 75 razy Pomógł: 909 razy Oblicz sumę jedenastu początkowych wyrazów Post autor: Zordon » 26 sie 2009, o 20:09 ups, źle przeczytałem polecenie, zatem wystarczy jednak danych Luuks Użytkownik Posty: 52 Rejestracja: 21 cze 2009, o 17:39 Płeć: Mężczyzna Podziękował: 20 razy Oblicz sumę jedenastu początkowych wyrazów Post autor: Luuks » 27 sie 2009, o 13:49 Inkwizytor pisze:220 Zordon mała podpórka: \(\displaystyle{ a_{n-1} + a_n + a_{n+1} = 3a_n}\) Możesz rozwinąć swoją myśl? Dasio11 Moderator Posty: 9828 Rejestracja: 21 kwie 2009, o 19:04 Płeć: Mężczyzna Lokalizacja: Wrocław Podziękował: 38 razy Pomógł: 2230 razy Oblicz sumę jedenastu początkowych wyrazów Post autor: Dasio11 » 27 sie 2009, o 14:13 \(\displaystyle{ a_n+a_n=a_{n-1}+a_{n+1}=a_{n-3}+a_{n+3}=\ldots=a_{n-k}+a_{n+k} \\ \\ \\ \sum_{k=1}^{11} a_{2k-1}=a_1+a_3+a_5+ \ldots + a_{17}+a_{19}+a_{21}= \\ \\ (a_1+a_{21})+(a_3+a_{19})+(a_5+a_{17})+ \ldots +(a_9+a_{13})+a_{11}=\ldots}\) Luuks Użytkownik Posty: 52 Rejestracja: 21 cze 2009, o 17:39 Płeć: Mężczyzna Podziękował: 20 razy Oblicz sumę jedenastu początkowych wyrazów Post autor: Luuks » 28 sie 2009, o 00:36 Dasio11 pisze:\(\displaystyle{ a_n+a_n=a_{n-1}+a_{n+1}=a_{n-3}+a_{n+3}=\ldots=a_{n-k}+a_{n+k} \\ \\ \\ \sum_{k=1}^{11} a_{2k-1}=a_1+a_3+a_5+ \ldots + a_{17}+a_{19}+a_{21}= \\ \\ (a_1+a_{21})+(a_3+a_{19})+(a_5+a_{17})+ \ldots +(a_9+a_{13})+a_{11}=\ldots}\) A da się jakoś inaczej, nie używając wzoru Newtona? czeslaw Użytkownik Posty: 2156 Rejestracja: 5 paź 2008, o 22:12 Płeć: Mężczyzna Lokalizacja: Politechnika Wrocławska Podziękował: 44 razy Pomógł: 317 razy Oblicz sumę jedenastu początkowych wyrazów Post autor: czeslaw » 28 sie 2009, o 00:45 Jakiego wzoru Newtona? :S Dasio11 Moderator Posty: 9828 Rejestracja: 21 kwie 2009, o 19:04 Płeć: Mężczyzna Lokalizacja: Wrocław Podziękował: 38 razy Pomógł: 2230 razy Oblicz sumę jedenastu początkowych wyrazów Post autor: Dasio11 » 28 sie 2009, o 09:02 To moje to nie jest wzór Newtona, tylko: 1. Napisanie, co i do czego właściwie i konkretnie dane jest nam dodać; 2. Poprzestawianie składników w myśl przemienności dodawania; 3. Pogrupowanie ich w pary; 4. Zauważenie, że suma każdej pary jest stała i nam znana ( jak również ostatni wyraz, który nie ma pary). A wzór Newtona, lub bardziej popularnie: dwumian Newtona - to wzór opisujący dwumian podniesiony do potęgi \(\displaystyle{ n}\)-tej. Chyba że jest jeszcze jakiś inny :[ Luuks Użytkownik Posty: 52 Rejestracja: 21 cze 2009, o 17:39 Płeć: Mężczyzna Podziękował: 20 razy Oblicz sumę jedenastu początkowych wyrazów Post autor: Luuks » 28 sie 2009, o 15:27 Chodziło mi o to , jak to zrobić, znając metody na poziomie klasy 2 liceum \(\displaystyle{ a _{1}=0 ?}\) Dasio11 Moderator Posty: 9828 Rejestracja: 21 kwie 2009, o 19:04 Płeć: Mężczyzna Lokalizacja: Wrocław Podziękował: 38 razy Pomógł: 2230 razy Oblicz sumę jedenastu początkowych wyrazów Post autor: Dasio11 » 28 sie 2009, o 15:43 Właśnie w ten sposób. Zauważ, że: \(\displaystyle{ a_{n+k}+a_{n-k}=\left( a_1+(n+k) \cdot r \right) + \left( a_1 +(n-k) \cdot r \right) = 2 \cdot a_1+2n \cdot r+k \cdot r-k \cdot r=2a_1+2nr=2(a_1+n \cdot r)=2 \cdot a_n}\) Na tym opierają się moje powyższe obliczenia, przypatrz się dobrze \(\displaystyle{ a_1}\) jest niewiadomą, jednak nie potrzeba go znać, bo i tak po obliczeniu zostają tylko \(\displaystyle{ a_{11}}\), który jest dany.
The sum of 9 and 5 is 14. How do you add or subtract 5 6 8 9 and 10 to equal 1? There is no sequence of adds or subtracts of 5, 6, 8, 9, and 10 that sum to 1.
1. a[1]=9, r=4a[n]=81 ---> 9+(n-1)*4=81 ---> n=...?Wzór na sumę n wyrazów Tutaj a=b P=a^2/2 -----> a=√(2P) =√8 =2√23. 3*8*11=...?4. a^2+b^2+2 = 2a+2ba^2-2a+1 +b^2-2b+1)=0(a-1)^2+(b-1)^2=0. To możliwe tylko, gdy a-1=0i b-1=05. x^2+6x+9 +y^2 -8y+16 = -21+9+16(x+3)^2 +(y-4)^2 = 4S=(-3,4), r=2 a) x= -3 -2, b) x= -3+2Czy wszystko jasne?
The problem is given an A set of integers a1, a2,…., an upto n integers. The question arises that is there a non-empty subset such that the sum of the subset is given as M integer?. For example, the set is given as [5, 2, 1, 3, 9], and the sum of the subset is 9; the answer is YES as the sum of the subset [5, 3, 1] is equal to 9.
Oblicz sumę jeżeli liczby 5+9+13...+201= tworzą ciąg arytmetyczny
Zadanie. oblicz sumę długości wszystkich przekąnych prostopadłościanu o wymiarach: 5cm x 12cm x 13 cmw odpowiedziach jest wynik 52 \\sqrt{2}Z góry dzięki + daje naj ; ). Question from @lloud - Gimnazjum - Matematyka
zad. 5 Oblicz sumę cyfr liczby, która jest wynikiem odejmowania 10 do 101 -3. 1 answer 0 about 13 years ago Zacznijmy tak: 100 - 3 = 97 1000 - 3 = 997 10 000 - 3 = 9 997 100 000 - 3 = 99 997 itd... czyli w wyniku odejmowania jest tyle cyfr, ile zer miała liczba, jedna z nich jest 7, a pozostałe są 9 10 do 101 to liczba złożona z 1 i stu jeden zer jeśli odejmiemy od niej 3, to powstanie liczba złożona ze stu jeden cyfr, będzie pośród nich jedna 7 i sto 9 Zatem suma cyfr tej liczby, to 9 * 100 + 7 = 907 Mam nadzieję, że dobrze... pozdrawiam pelikanka Experienced Odpowiedzi: 278 0 people got help Najnowsze pytania w kategorii Matematyka
wMEjh. p42i9dwzwr.pages.dev/76p42i9dwzwr.pages.dev/27p42i9dwzwr.pages.dev/35p42i9dwzwr.pages.dev/63p42i9dwzwr.pages.dev/78p42i9dwzwr.pages.dev/18p42i9dwzwr.pages.dev/9p42i9dwzwr.pages.dev/64
oblicz sumę 5 9 13